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X: A mapping from Q to R that describes the question we care about in practice.

Example: Q = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>...}
We may just care about how many tails? Thus,
X(<HHHHH>) = 0
X(<HHHTH>) =1
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Random Variables

X: A mapping from Q to R that describes the question we care about in practice.

Example: Q = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>...}
We may just care about how many tails? Thus,

X(<HHHHH>) = 0

X(<HHHTH>) = 1 if it takes only a countable

X(<TTTHT>) =4 number of values.
X(<HTTTT>) = 4

X only has 6 possible values: 0,1, 2, 3,4, 5
What is the probability that we end up with k = 4 tails?
P(X=k)=P({o:X(®w)=k})  wheren€
X(w) = 4 for 5 out of 32 sets in . Thus, assuming a fair coin, P(X = 4) = 5/32
(Not a variable, but a function that we end up notating a lot like a variable) |,

X is a discrete random variable
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Random Variables

X: A mapping from Q to R that describes the question we care about in practice.
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X: A mapping from Q to R that describes the question we care about in practice.

Example: Q = inches of snowfall = [0, ») € R

QLR o e Ry e X amount of inches in a snowstorm
can take on an infinite number of

X(ow)=o

values between any two given values.

14



Random Variables

X: A mapping from Q to R that describes the question we care about in practice.

Example: Q = inches of snowfall = [0, ») € R

QLN e e R e LY al < amountof inches in a snowstorm
can take on an infinite number of
X(ow)=o

values between any two given values.

What is the probability we receive (at least) a inches?
P(X>a)=P({o: X(w)>a})

What is the probability we receive between a and b inches?
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Random Variables

X: A mapping from Q to R that describes the question we care about in practice.

Example: Q = inches of snowfall = [0, ») € R

QLN N e R el i 8 X amountof inches in a snowstorm
can take on an infinite number of X(w) = . .
values between any two given values. @)= P(X =1):=0, foralli€ Q

(probability of receiving exactly 1
What is the probability we receive (at least) a inches?

PX>a)=P({o: X(w)>a})

inches of snowfall is zero)

What is the probability we receive between a and b inches?
P@a<X<b)=P({w:a<X(w)<b})

16



X is a continuous random variable if it

can take on an infinite number of
values between any two given values.

X is a continuous random variable if there exists a function fx such that:

fx(z) > 0,for all z € X,
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X is a continuous random variable if it

can take on an infinite number of
values between any two given values.
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X is a continuous random variable if it

can take on an infinite number of
values between any two given values.

fx : “probability density function” (pdf)

X is a continuous random variable if there exists a function fx such that:

fx(z) >0, for all x € X,

How to model?
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continuous random variable

OOQ
\i Discretize them!

| (group into discrete bins)
&

How to model?
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continuous random variable

P(bin=8) =.32
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continuous random variable

P(bin=8) =.32
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continuous random variable

P(bin=8) =.32

18

16

14 |

12
10 +

0
20 25 30 35 40

But arent we throwing away information?

45

|P(pin=12) = .08
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continuous random variable
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Continuous Distribution
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Continuous Distribution

fx : “probability density function” (pdf)

X is a continuous random variable if there exists a function fx such that:

fx(z) >0, for all x € X,
/ fx(x)dr =1, and

b
Pla < X <b) = / fx(x)dz
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Continuous Distribution

Common Trap
e fx(x) does notyield a probability
o /b fx(x)dx does
0 xa may be anything (%)

« thus, fx(xz) maybe>1
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Continuous Distribution

Common pdfs: Normal(y, 62)
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Continuous Distribution

Common pdfs: Normal(y, 62)

~
\\\

1 (z—p)?

fx(x) = 0\/%6— 20

w: mean (or “center”)
= expectation

o?: variance,
o: standard deviation
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Continuous Distribution

Common pdfs: Normal(y, 62) Credit: Wikipedia
. T R quov 0220.2'_
) 1 _l':l!—}‘l2 —_ p:o 02210 EE——
T — o2 i 1 oy
fX(I) 0’\/%6 08| /\‘ H=0, 0?%=5.0, ==
- / H=-2, 0%2=0.5, ==
0.6_ i
w: mean (or “center”) 0.4"_ / \ / \ ]
= expectation - \\\ -
0.2 A\
o’: variance : /f \\\ .
. , 00_—‘ J \ '\.~
o: standard deviation B I s e '3' EEE—




Continuous Distribution

Common pdfs: Normal(y, 62)

X ~ Normal(, 6%), examples:
0.09

0.08 |

e height

0.07 |
e intelligence/ability 0.06 |

e measurement error 005

004}
e averages (or sum) of 003l

lots of random variables 002}

0.01f

0.00

20 25 30 35 40



Continuous Distribution

Common pdfs: Normal(0, 1)

P(-1<Z<1)~.68 P(-2<Z<2)~.95 P(-3<Z<3)~.99

. within 1 - o =~ 68%

Normal PDF B within 2 o ~ 95%

I:I within 3 - o0 =~ 99%

(8]

—30 —20 =g o 20 30

Credit: MIT Open Courseware: Probability and Statistics 32



Continuous Distribution

Common pdfs: Normal(0, 1) (“standard normal”)

How to “standardize” any normal distribution:

1. subtract the mean, u (aka “mean centering”)
2. divide by the standard deviation, o

z=(x-u) /o, (aka“zscore”)

Credit: MIT Open Courseware: Probability and Statistics
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Continuous Distribution

Common pdfs: Uniform(a, b)

L for x € [a, b]

o = {2

otherwise
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Continuous Distribution

Common pdfs: Uniform(a, b) _ Uniform(a, b), examples:

e spinnerin a game

Fel@) L forx € [a, D]
Xr) = . random number generator
X 0 otherwise ° J
e analog to digital rounding error
1 2
5= | f(z)
4 1
5 8
» T
a b 35




Continuous Distribution

Common pdfs: Exponential())

Credit: Wikipedia

\: rate or inverse scale

1
:scale (( )\ = —
f ( g )




Common pdfs: Exponential())

X ~

Continuous Distribution

Exp(A\), examples:

lifetime of electronics

waiting times between rare events
(e.g. waiting for a taxi)

recurrence of words across

documents

Credit: Wikipedia




Continuous Distribution: CDF

For a given random variable X, the

cumulative distribution function (CDF),

Fx: & — |0, 1], is defined by:
Fx(z) =P(X < x)

fx:
probability density function (pdf)

x) > 0, for all x € X,

/ fxl(x 1, and

Pla< X <b) = /jX
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Continuous Distribution: CDF

1

F (x)
For a given random variable X, the
cumulative distribution function (CDF), :
Fx:[® — [0, 1], is defined by: Uniform =>
Fx(z) =P(X <x)
o a




Continuous Distribution: CDF

For a given random variable X, the
cumulative distribution function (CDF),
Fx: & — |0, 1], is defined by:

Fx(z)=P(X <x)

P(X=x)

‘ {— Exponential

10

[k}

~~ 06
s

Normal = g&t..|

a2

00

1

F (x)

Uniform —>

/

NN
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Continuous Distribution: CDF

P(X=x)

1
F (x)
For a given random variable X, the
cumulative distribution function (CDF), :
Fx:[® — [0, 1], is defined by: Uniform =>
Fx(z) =P(X <x)
o a

10

Pro: F'x(2) yields a probability!

%

NN

Con: Not intuitively interpretable.
- / — A=1 1 02
A=15 A
o 1 2 3 4 5 o e
X ]
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Continuous Distribution

How to decide which pdf is best for my data?

Look at a non-parametric curve estimate:
(If you have lots of data)

e Histogram
e Kernel Density Estimator
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Continuous Distribution

How to decide which pdf is best for my data?

Look at a non-parametric curve estimate:
(If you have lots of data)

e Histogram
e Kernel Density Estimator

K: kernel function, h: bandwidth

(for every data point, draw K and add to density)



Continuous Distribution

How to decide which pdf is best for my data?

Look at a non-parametric curve estimate:
(If you have lots of data)

e Histogram
e Kernel Density Estimator

K: kernel function, h: bandwidth

Available Kernels

|||||

lllll

vvvvv

linear

vvvvv

cosine

2h -h 0 h 2h

(for every data point, draw K and add to density)

2h -h 0 h 2h

2h -h 0 h 2h
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Continuous Distribution

Available Kernels

T T T
gaussian

nnnnn

lllll

vvvvv

epanechnikov

. -
linear

: :
cosine

2h -h 0 h 2h

2h -h 0 h 2h

2h -h 0 h 2h
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Continuous Distribution

/J'US’[ like a pdf, this N /to figure out y for a given x, 0
function takes in an x take the sum of where each S
and returns the where each kernel (a density
appropriate y on an plot for each data point in -
estimated distribution the original X) puts that x. g o

\_curve \ﬁ J g =

2
{ \ z
n o S
- 1 1 xr— X i o
fla)= 3~k
n ‘= h h




Random Variables

X: A mapping from Q to R that describes the question we care about in practice.

X is a continuous random variable if it X is a discrete random variable

can take on an infinite number of if it takes only a countable
values between any two given values. number of values.

Amount of snowfall Amount of salec of a blue case
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Discrete Distribution

For a given discrete random variable X,
probability mass function (pmf),
fx: 8 — [0, 1], is defined by:

fx(x)=P(X =)

X is a discrete random variable

if it takes only a countable
number of values.

Amount of salec of a blue cace

Was a single cale a blue case: {0, 1/



Discrete Distribution

For a given discrete random variable X,
probability mass function (pmf),
fx: 8 — [0, 1], is defined by:

fx(x)=P(X =)

010

015

06
L

0.00

¢+ pr0Sand =20
* p07 and =20
* p~05 and n=40

Binomial (n, p)

T T T T T
0 10 20 20 40

X is a discrete random variable

if it takes only a countable
number of values.

Amount of salec of a blue case

Was a single cale a blue case: {0, 1/



Discrete Distribution

For a given random variable X, the
cumulative distribution function (CDF),
Fx: & — [0, 1], is defined by:

Fx(z) =P(X < x)

X is a discrete random variable

if it takes only a countable
; number of values.

10

08

Binomial(n, p)

s Amount of salec of a blue case
~ (like normal)
= . .- - p=05 and N=20
. . « p=07 and N=20
- + p=05 and N=40

06

0.4

0 10 20 30 40




1 — e
Discrete Distribution —o
Discrete =
For a given random variable X, the Uniform = *—o
cumulative distribution function (CDF), 04—
Fx: R — [0, 1], is defined by: . .

Fx(z) =P(X < x)

X is a discrete random variable

if it takes only a countable
; number of values.

10

08

06

¢—— Binomial (n, p)

0.4

e I ~ p=05 and N=20 (like normal)
o o . « p=07 and N=20
N Bl g g + p=05 and N=40
N .

0 10 20 30 40




Discrete Distribution

For a given random variable X, the
cumulative distribution function (CDF),
Fx: & — [0, 1], is defined by:

Fx(z) =P(X < x)

For a given discrete random variable X,
probability mass function (pmf),
fx: 8 — [0, 1], is defined by:

fx(x)=P(X =)

X is a discrete random variable

if it takes only a countable
number of values.
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Discrete Distribution

For a given random variable X, the
cumulative distribution function (CDF),
Fx: & — [0, 1], is defined by:

Fx(z) =P(X < x)

For a given discrete random variable X,
probability mass function (pmf),
fx: 8 — [0, 1], is defined by:

fx(x)=P(X =)

+ pr0Sandn~20
* p07 and =20
* p~05 and n=40

Binomial (n, p)

-
oooooooooooo

X is a discrete random variable

if it takes only a countable
number of values.
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Discrete Distribution

For a given random variable X, the
cumulative distribution function (CDF),
Fx: & — [0, 1], is defined by:

Fx(z) =P(X < x)

For a given discrete random variable X,
probability mass function (pmf),
fx: 8 — [0, 1], is defined by:

fx(x)=P(X =)

+ pr0Sand =20
* p07 and =20
* p~05 and n=40

Binomial (n, p)

X is a discrete random variable
if it takes only a countable
number of values.




Discrete Distribution 8-
Common Discrete Random Variables 2
:3-

e Binomial(n, p) = g

.nl

frle) = (

+ pr0Sand =20
* p07 and =20
* p=05and n=40

Binomial (n, p)

.............

) (1—p)" ", if 0 < 2 < n (0 otherwise
I I

example: number of heads after n coin flips (p, probability of heads)
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Discrete Distribution

Common Discrete Random Variables

e Binomial(n, p)

(n) p;r(' 1 __p)n.—;r.! lf

number of heads after n coin flips (p, probability of heads)

Parameters:

n: number of "trials"
p: probability of the event

~

)

. i b
4 sesetenobane?®

0.00

+ pr0Sand =20
* p07 and =20
* p~05 and n=40

Binomial (n, p)

0000000000000

0 < z < n (0 otherwise)
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q 4
= o p-(l.').mdn-@
Discrete Distribution , ¢ 505 e
b " Binomial (n, p)
Common Discrete Random Variables o
3 -
e Binomial(n, p) s o gt T
" if 0 < 2 < n (0 otherwise) & %
heads after n coin flips (p, probability of heads)
Parameters: binomial coefficient: \
n: number of "trials" "n choose x": total number of
p: probability of the event ways to have x successes of the

/| event.

k (2) - :76!(nni z)! /




Discrete Distribution

Common Discrete Random Variables

Binomial(n, p)
felo)=

.nl

o

. o b
4 sesetenobane?®

+ pr0Sand =20
* p07 and =20
* p=05and n=40

Binomial (n, p)

.............

" (1—p)" ", if 0 < 2 < n (0 otherwise) ~
I I

example: number of heads after n coin flips (p, probability of heads)

Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure
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94
2 ¢ pr0Sandn=20
Discrete Distribution 7 : Al
g 5 ~_ Binomial (n, p)
Common Discrete Random Variables 31
g
e Binomial(n, p) e A
fx(x) = (Z)])I(l—l))n_r, if0<z< ;2 (;0 ot.her{?ovise) s x ®

example: number of heads after n coin flips (p, probability of heads)
e Bernoulli(p) = Binomial(1, p) £(%)

example: one trial of success or failure
e Discrete Uniform(a, b)

® o o o o

S
|

o
Q
x



Discrete Distribution

Common Discrete Random Variables

Binomial(n, p)

fx(a) = ("’

8-‘ LE A

015 020
' I

0.10
L

06
1

. .
shanet

+ pr0Sand =20
* p07 and =20
* p=05and n=40

Binomial (n, p)

) (1—p)" ", if 0 < 2 < n (0 otherwise
I I

example: number of heads after n coin flips (p, probability of heads)

Bernoulli(p) = Binomial(1, p)

example: one trial of success or failure
Discrete Uniform(a, b)

Geometric(p)

P(X=k)=p(1-p)<, k>1

example: coin flips until first head

o p=0.2 |
o p=05 i
o p=0.8
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RV Review

e Continuous random variable
o PDFs, the notion of density
o normal, uniform, exponential
o CDFs
o kernel density estimation

e Discrete random variables
o PMFs

o binomial, Bernoulli, uniform, geometric
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