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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 
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X(<HTTTT>) = 4
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X: A mapping from Ω to ℝ  that describes the question we care about in practice.
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We may just care about how many tails? Thus, 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X(ω) = k)                                      where ω ∊ Ω    
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
X(ω) = 4 for 5 out of 32 sets in Ω. Thus, assuming a fair coin, P(X = 4) = 5/32 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
X(ω) = 4 for 5 out of 32 sets in Ω. Thus, assuming a fair coin, P(X = 4) = 5/32 

(Not a variable, but a function that we end up notating a lot like a variable) 9
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = 5 coin tosses = {<HHHHH>, <HHHHT>, <HHHTH>, <HHHTH>…}
We may just care about how many tails? Thus, 

X(<HHHHH>) = 0
X(<HHHTH>) = 1 
X(<TTTHT>) = 4
X(<HTTTT>) = 4

X only has 6 possible values: 0, 1, 2, 3, 4, 5
What is the probability that we end up with k = 4 tails?

P(X = k) := P( {ω : X(ω) = k} )       where ω ∊ Ω    
X(ω) = 4 for 5 out of 32 sets in Ω. Thus, assuming a fair coin, P(X = 4) = 5/32 

(Not a variable, but a function that we end up notating a lot like a variable)

X is a discrete random variable 
if it takes only a countable 

number of values. 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

X is a discrete random variable 
if it takes only a countable 

number of values. 

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω
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Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≤ b} ) 15

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 



Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

Example: Ω = inches of snowfall = [0, ∞) ⊆ ℝ

X amount of inches in a snowstorm

X(ω) = ω

What is the probability we receive (at least) a inches?
P(X ≥ a) := P( {ω : X(ω) ≥ a} ) 

What is the probability we receive between a and b inches?
P(a ≤ X ≤ b) := P( {ω : a ≤ X(ω) ≤ b} ) 

P(X = i) := 0, for all i ∊ Ω

(probability of receiving exactly i 

inches of snowfall is zero) 
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can take on an infinite number of 

values between any two given values. 
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

X is a continuous random variable if there exists a function fx such that:

...



18

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

fx : “probability density function” (pdf)

X is a continuous random variable if there exists a function fx such that:

...
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X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 

fx : “probability density function” (pdf)

X is a continuous random variable if there exists a function fx such that:

...

How to model?
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How to model?

Discretize them!
(group into discrete bins)

continuous random variable 
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P(bin=8) = .32

continuous random variable 
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P(bin=8) = .32

P(bin=12) = .08

continuous random variable 



23But aren’t we throwing away information? 

P(bin=8) = .32

P(bin=12) = .08

continuous random variable 
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continuous random variable 
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Continuous Distribution
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X is a continuous random variable if there exists a function fx such that:

fx : “probability density function” (pdf)

Continuous Distribution



Common Trap

●              does not yield a probability

○                      does

○ 𝓍 may be anything (ℝ)

■ thus,               may be > 1
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Continuous Distribution



Common pdfs: Normal(μ, σ2)

              =
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Continuous Distribution



Common pdfs: Normal(μ, σ2)

              =

μ: mean (or “center”) 
     =  expectation

σ2: variance, 
σ: standard deviation 29
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Common pdfs: Normal(μ, σ2)

              =

μ: mean (or “center”) 
     =  expectation

σ2: variance, 
σ: standard deviation 30

Credit: Wikipedia

Continuous Distribution



Common pdfs: Normal(μ, σ2)

X ~ Normal(μ, σ2), examples:

● height

● intelligence/ability

● measurement error

● averages (or sum) of 

lots of random variables
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Continuous Distribution



Common pdfs: Normal(0, 1)

32Credit: MIT Open Courseware: Probability and Statistics

Continuous Distribution



Common pdfs: Normal(0, 1)  (“standard normal”)

How to “standardize” any normal distribution:

1. subtract the mean, μ (aka “mean centering”)
2. divide by the standard deviation, σ

z = (x - μ)  / σ,   (aka “z score”)

33Credit: MIT Open Courseware: Probability and Statistics

Continuous Distribution



Common pdfs: Uniform(a, b)

              =
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Continuous Distribution



Common pdfs: Uniform(a, b)

              =
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X ~ Uniform(a, b), examples:

● spinner in a game

● random number generator

● analog to digital rounding error

Continuous Distribution



Common pdfs: Exponential(λ)

λ: rate or inverse scale

𝛽: scale   (                 )

36

Credit: Wikipedia

Continuous Distribution



Common pdfs: Exponential(λ)

X ~ Exp(λ), examples:

● lifetime of electronics

● waiting times between rare events

(e.g. waiting for a taxi)

● recurrence of words across 

documents

37

Credit: Wikipedia

Continuous Distribution
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Continuous Distribution: CDF

fx : 
probability density function (pdf)
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:
Uniform

Continuous Distribution: CDF
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Exponential

Normal

Uniform

Continuous Distribution: CDF
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For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Exponential

Normal

Uniform

Pro:               yields a probability!

Con: Not intuitively interpretable.

Continuous Distribution: CDF



How to decide which pdf is best for my data? 

Look at a non-parametric curve estimate:
(If you have lots of data)

● Histogram
● Kernel Density Estimator
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Continuous Distribution



How to decide which pdf is best for my data? 

Look at a non-parametric curve estimate:
(If you have lots of data)

● Histogram
● Kernel Density Estimator

K: kernel function, h: bandwidth

(for every data point, draw K and add to density)
43

Continuous Distribution



How to decide which pdf is best for my data? 

Look at a non-parametric curve estimate:
(If you have lots of data)

● Histogram
● Kernel Density Estimator

K: kernel function, h: bandwidth

(for every data point, draw K and add to density)
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Continuous Distribution
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Continuous Distribution
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just like a pdf, this 
function takes in an x 
and returns the 
appropriate y on an 
estimated distribution 
curve

to figure out y for a given x, 
take the sum of where each 
where each kernel (a density 
plot for each data point in 
the original X) puts that x. 

Continuous Distribution



Random Variables

X: A mapping from Ω to ℝ  that describes the question we care about in practice.

X is a discrete random variable 
if it takes only a countable 

number of values. 

X is a continuous random variable if it 
can take on an infinite number of 

values between any two given values. 
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Amount of sales of a blue caseAmount of snowfall



X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given discrete random variable X,  
probability mass function (pmf), 

fx: ℝ → [0, 1], is defined by:

Amount of sales of a blue case

Was a single sale a blue case: {0, 1}

Discrete Distribution
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Binomial (n, p)
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X is a discrete random variable 
if it takes only a countable 

number of values. 

Amount of sales of a blue case

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Binomial(n, p)

(like normal)

Discrete Distribution
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X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

Binomial (n, p)

(like normal)

Discrete
Uniform

Discrete Distribution



52

X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 
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fx: ℝ → [0, 1], is defined by:

Discrete Distribution
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X is a discrete random variable 
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X is a discrete random variable 
if it takes only a countable 

number of values. 

For a given random variable X, the 
cumulative distribution function (CDF), 

Fx: ℝ → [0, 1], is defined by:

For a given discrete random variable X,  
probability mass function (pmf), 

fx: ℝ → [0, 1], is defined by:

Binomial (n, p)

Discrete Distribution



Common Discrete Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)
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Binomial (n, p)

Discrete Distribution



Common Discrete Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)

56

Binomial (n, p)

Discrete Distribution

Parameters: 
n: number of "trials"
p: probability of the event



Common Discrete Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)
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Binomial (n, p)

Discrete Distribution

Parameters: 
n: number of "trials"
p: probability of the event

binomial coefficient:
"n choose x": total number of 
ways to have x successes of the 
event.



Common Discrete Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)

● Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure
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Binomial (n, p)

Discrete Distribution



Common Discrete Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)

● Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure

● Discrete Uniform(a, b)
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Binomial (n, p)

Discrete Distribution



Common Discrete Random Variables

● Binomial(n, p)

 
example: number of heads after n coin flips (p, probability of heads)

● Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure

● Discrete Uniform(a, b)
● Geometric(p)

P(X = k) = p(1 - p)k-1,  k ≥ 1
example: coin flips until first head
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Binomial (n, p)

Geo(p)

Discrete Distribution



RV Review

● Continuous random variable

○ PDFs, the notion of density

○ normal, uniform, exponential

○ CDFs

○ kernel density estimation

● Discrete random variables

○ PMFs

○ binomial, Bernoulli, uniform, geometric
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