Random Variables

Statistics for Data Science CSE357-Fall 2021

Random Variables

X: A mapping from Ω to 屌 that describes the question we care about in practice.

Random Variables

X: A mapping from Ω to 屌 that describes the question we care about in practice.
Example: $\mathbf{\Omega}=5$ coin tosses $=\{<\mathrm{HHHHH}>,<$ HHHHT $>,<$ HHHTH $>,<$ HHHTH $>\ldots\}$

Random Variables

X: A mapping from Ω to 屌 that describes the question we care about in practice.
Example: $\Omega=5$ coin tosses $=\{<$ HHHHH $>,<$ HHHHT $>,<$ HHHTH $>,<$ HHHTH $>\ldots\}$ We may just care about how many tails? Thus,

$$
\begin{aligned}
& \text { X }(<\text { HHHHH }>)=0 \\
& X(<\text { HHHTH }>)=1 \\
& X(<\text { TTTHT }>)=4 \\
& X(<\text { HTTTT }>)=4
\end{aligned}
$$

Random Variables

X: A mapping from Ω to 屌 that describes the question we care about in practice.
Example: $\Omega=5$ coin tosses $=\{<$ HHHHH $>,<$ HHHHT $>,<$ HHHTH $>,<$ HHHTH $>\ldots\}$ We may just care about how many tails? Thus,

$$
\begin{aligned}
& \text { X }(<\text { HHHHH }>)=0 \\
& \text { X }(<\text { HHHTH }>)=1 \\
& \text { X }(<\text { TTTHT }>)=4 \\
& \text { X }(<\text { HTTTT }>)=4
\end{aligned}
$$

X only has 6 possible values: $0,1,2,3,4,5$

Random Variables

X: A mapping from Ω to 屌 that describes the question we care about in practice.
Example: $\Omega=5$ coin tosses $=\{<$ HHHHH $>,<$ HHHHT $>,<$ HHHTH $>,<$ HHHTH $>\ldots\}$ We may just care about how many tails? Thus,

$$
\begin{aligned}
& \text { X }(<\text { HHHHH }>)=0 \\
& \text { X }(<\text { HHHTH }>)=1 \\
& \mathrm{X}(<\text { TTTHT }>)=4 \\
& \mathrm{X}(<\text { HTTTT }>)=4
\end{aligned}
$$

X only has 6 possible values: $0,1,2,3,4,5$
What is the probability that we end up with $\mathrm{k}=4$ tails?

$$
\mathbf{P}(\mathrm{X}(\omega)=k) \quad \text { where } \omega \in \boldsymbol{\Omega}
$$

Random Variables

X: A mapping from Ω to 屌 that describes the question we care about in practice.
Example: $\Omega=5$ coin tosses $=\{<$ HHHHH $>,<$ HHHHT $>,<$ HHHTH $>,<$ HHHTH $>\ldots\}$ We may just care about how many tails? Thus,

$$
\begin{aligned}
& \mathrm{X}(<\text { HHHHH }>)=0 \\
& \mathrm{X}(<\text { HHHTH }>)=1 \\
& \mathrm{X}(<\text { TTTHT }>)=4 \\
& \mathrm{X}(<\text { HTTTT }>)=4
\end{aligned}
$$

X only has 6 possible values: $0,1,2,3,4,5$
What is the probability that we end up with $\mathrm{k}=4$ tails?

$$
\mathbf{P}(\mathrm{X}=k):=\mathbf{P}(\{\omega: \mathrm{X}(\omega)=\mathrm{k}\}) \quad \text { where } \omega \in \boldsymbol{\Omega}
$$

Random Variables

X: A mapping from Ω to 㒭 that describes the question we care about in practice.
Example: $\Omega=5$ coin tosses $=\{<$ HHHHH $>,<$ HHHHT $>,<$ HHHTH $>,<$ HHHTH $>\ldots\}$ We may just care about how many tails? Thus,

$$
\begin{aligned}
& \mathrm{X}(<\text { HHHHH }>)=0 \\
& \mathrm{X}(<\text { HHHTH }>)=1 \\
& \mathrm{X}(<\text { TTTHT }>)=4 \\
& \mathrm{X}(<\text { HTTTT }>)=4
\end{aligned}
$$

X only has 6 possible values: $0,1,2,3,4,5$
What is the probability that we end up with $\mathrm{k}=4$ tails?

$$
\mathbf{P}(\mathrm{X}=k):=\mathbf{P}(\{\omega: \mathrm{X}(\omega)=\mathrm{k}\}) \quad \text { where } \omega \in \boldsymbol{\Omega}
$$

$X(\omega)=4$ for 5 out of 32 sets in $\boldsymbol{\Omega}$. Thus, assuming a fair coin, $\mathbf{P}(X=4)=5 / 32$

Random Variables

X: A mapping from Ω to 屌 that describes the question we care about in practice.
Example: $\Omega=5$ coin tosses $=\{<$ HHHHH $>,<$ HHHHT $>,<$ HHHTH $>,<$ HHHTH $>\ldots\}$ We may just care about how many tails? Thus,

$$
\begin{aligned}
& \mathrm{X}(<\text { HHHHH }>)=0 \\
& \mathrm{X}(<\text { HHHTH }>)=1 \\
& \mathrm{X}(<\text { TTTHT }>)=4 \\
& \mathrm{X}(<\text { HTTTT }>)=4
\end{aligned}
$$

X only has 6 possible values: $0,1,2,3,4,5$
What is the probability that we end up with $\mathrm{k}=4$ tails?

$$
\mathbf{P}(\mathrm{X}=k):=\mathbf{P}(\{\omega: \mathrm{X}(\omega)=\mathrm{k}\}) \quad \text { where } \omega \in \boldsymbol{\Omega}
$$

$X(\omega)=4$ for 5 out of 32 sets in $\boldsymbol{\Omega}$. Thus, assuming a fair coin, $\mathbf{P}(X=4)=5 / 32$
(Not a variable, but a function that we end up notating a lot like a variable)

9-2-2021

Normal Distribution
Programming Statistics -- Numpy and Random Variables

Random Variables

X: A mapping from Ω to 圆 that describes the question we care about in practice.

Example: $\boldsymbol{\Omega}=5$ coin tosses $=\{<\mathbf{H H H H H}>,<$ HHHHT $>,<$ HHHTH $>,<$ HHHTH $>\ldots\}$ We may just care about how many tails? Thus,

$$
\begin{aligned}
& \mathrm{X}(<\text { HHHHH }>)=0 \\
& \mathrm{X}(<\text { HHHTH }>)=1 \\
& \mathrm{X}(<\text { TTTHT }>)=4 \\
& \mathrm{X}(<\text { HTTTT }>)=4
\end{aligned}
$$

X is a discrete random variable if it takes only a countable number of values.
X only has 6 possible values: $0,1,2,3,4,5$
What is the probability that we end up with $\mathrm{k}=4$ tails?

$$
\mathbf{P}(\mathrm{X}=k):=\mathbf{P}(\{\omega: \mathrm{X}(\omega)=\mathrm{k}\}) \quad \text { where } \omega \in \boldsymbol{\Omega}
$$

$X(\omega)=4$ for 5 out of 32 sets in $\boldsymbol{\Omega}$. Thus, assuming a fair coin, $\mathbf{P}(X=4)=5 / 32$
(Not a variable, but a function that we end up notating a lot like a variable)

Random Variables

\mathbf{X} : A mapping from Ω to 屁 that describes the question we care about in practice.

X is a continuous random variable if it can take on an infinite number of values between any two given values.

X is a discrete random variable if it takes only a countable number of values.

Random Variables

\mathbf{X} : A mapping from Ω to 屌 that describes the question we care about in practice.
Example: $\Omega=$ inches of snowfall $=[0, \infty) \subseteq$ 居

X is a continuous random variable if it can take on an infinite number of values between any two given values.

Random Variables

\mathbf{X} : A mapping from Ω to 屌 that describes the question we care about in practice.
Example: $\Omega=$ inches of snowfall $=[0, \infty) \subseteq$ 居

X is a continuous random variable if it can take on an infinite number of values between any two given values.
X amount of inches in a snowstorm

$$
\mathbf{X}(\omega)=\omega
$$

Random Variables

\mathbf{X} : A mapping from Ω to 腮 that describes the question we care about in practice.
Example: $\boldsymbol{\Omega}=$ inches of snowfall $=[0, \infty) \subseteq$ 皿

X is a continuous random variable if it can take on an infinite number of values between any two given values.
X amount of inches in a snowstorm

$$
\mathbf{X}(\omega)=\omega
$$

What is the probability we receive (at least) a inches?
$\mathbf{P}(X \geq a):=\mathbf{P}(\{\omega: X(\omega) \geq a\})$
What is the probability we receive between a and b inches?
$\mathbf{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b}):=\mathbf{P}(\{\omega: \mathrm{a} \leq \mathrm{X}(\omega) \leq \mathrm{b}\})$

Random Variables

\mathbf{X} : A mapping from Ω to 腮 that describes the question we care about in practice.
Example: $\boldsymbol{\Omega}=$ inches of snowfall $=[0, \infty) \subseteq$ 皿

X is a continuous random variable if it can take on an infinite number of values between any two given values.

What is the probability we receive (at least) a inches?
$\mathbf{P}(X \geq a):=\mathbf{P}(\{\omega: X(\omega) \geq a\})$
X amount of inches in a snowstorm

$$
\mathbf{X}(\omega)=\omega
$$

What is the probability we receive between a and b inches?
$\mathbf{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b}):=\mathbf{P}(\{\omega: \mathrm{a} \leq \mathrm{X}(\omega) \leq \mathrm{b}\})$
\mathbf{X} is a continuous random variable if it can take on an infinite number of values between any two given values.
X is a continuous random variable if there exists a function $f x$ such that:

$$
f_{X}(x) \geq 0 \text {, for all } x \in X,
$$

> X is a continuous random variable if it can take on an infinite number of values between any two given values.
$f x$: "probability density function" (pdf)
X is a continuous random variable if there exists a function $f x$ such that:

$$
f_{X}(x) \geq 0, \text { for all } x \in X
$$

\mathbf{X} is a continuous random variable if it can take on an infinite number of values between any two given values.

$$
f x \text { : "probability density function" (pdf) }
$$

X is a continuous random variable if there exists a function $f x$ such that:

$$
f_{X}(x) \geq 0, \text { for all } x \in X
$$

How to model?

continuous random variable

Discretize them!
 (group into discrete bins)

How to model?
continuous random variable

continuous random variable

continuous random variable

But aren't we throwing away information?

Continuous Distribution

Continuous Distribution

$f x$: "probability density function" (pdf)
X is a continuous random variable if there exists a function $f x$ such that:

$$
\begin{gathered}
f_{X}(x) \geq 0, \text { for all } x \in X \\
\int_{-\infty}^{\infty} f_{X}(x) d x=1, \text { and } \\
\mathrm{P}(a<X<b)=\int_{a}^{b} f_{X}(x) d x
\end{gathered}
$$

Continuous Distribution

Common Trap

- $f_{X}(x)$ does not yield a probability
- $\int_{a}^{b} f_{X}(x) d x$ does

- x may be anything (\mathbb{R})
- thus, $f_{X}(x)$ may be >1

Continuous Distribution

Common pdfs: $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Continuous Distribution

Common pdfs: $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

μ : mean (or "center")
= expectation
σ^{2} : variance,

σ : standard deviation

Continuous Distribution

Common pdfs: $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$
μ : mean (or "center")
= expectation
σ^{2} : variance,
σ : standard deviation

Continuous Distribution

Common pdfs: $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$

$X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, examples:

- height
- intelligence/ability
- measurement error
- averages (or sum) of
lots of random variables

Continuous Distribution

Common pdfs: $\operatorname{Normal}(0,1)$

$$
P(-1 \leq Z \leq 1) \approx .68, \quad P(-2 \leq Z \leq 2) \approx .95, \quad P(-3 \leq Z \leq 3) \approx .99
$$

Continuous Distribution

Common pdfs: Normal(0,1) ("standard normal")

How to "standardize" any normal distribution:

1. subtract the mean, μ (aka "mean centering")
2. divide by the standard deviation, σ
$\mathrm{z}=(\mathrm{x}-\mu) / \sigma, \quad$ aka "z score")

Continuous Distribution

Common pdfs: Uniform(a, b)

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in[a, b] \\ 0 & \text { otherwise }\end{cases}
$$

Continuous Distribution

Common pdfs: Uniform(a, b)

> X ~ Uniform(a, b), examples:
$f_{X}(x)= \begin{cases}\frac{1}{b-a} & \text { for } x \in[a, b] \\ 0 & \text { otherwise }\end{cases}$

- spinner in a game
- random number generator
- analog to digital rounding error

Continuous Distribution

Common pdfs: Exponential (λ)
Credit: Wikipedia
$f_{X}(x)=\lambda e^{-\lambda x}, x>0$
λ : rate or inverse scale
β : scale $\left(\lambda=\frac{1}{\beta}\right)$

Continuous Distribution

Common pdfs: Exponential(λ)

Credit: Wikipedia
$X \sim \operatorname{Exp}(\lambda)$, examples:

- lifetime of electronics
- waiting times between rare events (e.g. waiting for a taxi)
- recurrence of words across documents

Continuous Distribution: CDF

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

$f x$:
probability density function (pdf)

$$
\begin{gathered}
f_{X}(x) \geq 0, \text { for all } x \in X \\
\int_{-\infty}^{\infty} f_{X}(x) d x=1, \text { and } \\
\mathrm{P}(a<X<b)=\int_{a}^{b} f_{X}(x) d x
\end{gathered}
$$

Continuous Distribution: CDF

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

Continuous Distribution: CDF

For a given random variable X, the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

Continuous Distribution: CDF

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

Continuous Distribution

How to decide which pdf is best for my data?

Look at a non-parametric curve estimate:
(If you have lots of data)

- Histogram
- Kernel Density Estimator

Continuous Distribution

How to decide which pdf is best for my data?

Look at a non-parametric curve estimate:
(If you have lots of data)

- Histogram
- Kernel Density Estimator

$$
\hat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x-X_{i}}{h}\right)
$$

K : kernel function, h : bandwidth
(for every data point, draw K and add to density)

Continuous Distribution

How to decide which pdf is best for my data?

Look at a non-parametric curve estimate: (If you have lots of data)

- Histogram
- Kernel Density Estimator

$$
\hat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x-X_{i}}{h}\right)
$$

K : kernel function, h : bandwidth

(for every data point, draw K and add to density)

Continuous Distribution

$$
\hat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x-X_{i}}{h}\right)
$$

Continuous Distribution

just like a pdf, this function takes in an x and returns the appropriate y on an estimated distribution curve
to figure out y for a given x , take the sum of where each where each kernel (a density plot for each data point in the original X) puts that x.

$$
\hat{f}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{h} K\left(\frac{x-X_{i}}{h}\right)
$$

Random Variables

\mathbf{X} : A mapping from Ω to 屌 that describes the question we care about in practice.

X is a continuous random variable if it can take on an infinite number of values between any two given values.

X is a discrete random variable if it takes only a countable number of values.
Amount of snowfall
Amount of sales of a blue case

Discrete Distribution

For a given discrete random variable X , probability mass function (imf), $f x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
f_{X}(x)=\mathrm{P}(X=x)
$$

X is a discrete random variable if it takes only a countable number of values.

Amount of sales of a blue case

Was a single sale a blue case: $\{0,1\}$

Discrete Distribution

For a given discrete random variable X , probability mass function ($p m f$), $f_{x}: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
f_{X}(x)=\mathrm{P}(X=x)
$$

X is a discrete random variable if it takes only a countable number of values.

Amount of sales of a blue case

Was a single sale a blue case: $\{0,1\}$

Discrete Distribution

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

X is a discrete random variable if it takes only a countable number of values.

Amount of sales of a blue case

Discrete Distribution

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

Discrete Uniform

X is a discrete random variable if it takes only a countable number of values.
\Leftarrow Binomial (n, p)
(like normal)

Discrete Distribution

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

X is a discrete random variable if it takes only a countable number of values.
For a given discrete random variable X , probability mass function (pmf), $f x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
f_{X}(x)=\mathrm{P}(X=x)
$$

Discrete Distribution

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

For a given discrete random variable X ,

X is a discrete random variable if it takes only a countable number of values. probability mass function (pmf), $f x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
f_{X}(x)=\mathrm{P}(X=x)
$$

Discrete Distribution

For a given random variable X , the cumulative distribution function (CDF), $F x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
F_{X}(x)=\mathrm{P}(X \leq x)
$$

X is a discrete random variable if it takes only a countable number of values.
For a given discrete random variable X , probability mass function (pmf), $f x: \mathbb{R} \rightarrow[0,1]$, is defined by:

$$
f_{X}(x)=\mathrm{P}(X=x)
$$

Discrete Distribution

Common Discrete Random Variables

- Binomial(n, p)
$f_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}$, if $0 \leq x \leq n \rho^{3} 0$ otherwise $) \quad{ }_{20}^{10} \quad{ }^{20} \quad{ }^{20}$
example: number of heads after n coin flips (p, probability of heads)

Discrete Distribution

Common Discrete Random Variables

- Binomial(n, p)
$f_{X}(x) \neq\binom{ n}{x} p^{x}(1-p)^{n-x}$, if $0 \leq x \leq n^{3}(0$ otherwise $) \quad{ }^{20} \quad{ }^{20} \quad{ }^{20}$
example: n number of heads after n coin flips (p, probability of heads)

Parameters:

n: number of "trials"
p : probability of the event

Discrete Distribution

Common Discrete Random Variables

- Binomial(n, p)
$f_{X}(x) \neq\binom{ n}{x} p^{x}(1-p)^{n-x}$, if $0 \leq x \leq n^{3}(0$ otherwise $) \quad{ }^{20} \quad{ }^{30} \quad{ }^{30}$ example: n umber heads after n coin flips (p, probability of heads)

Parameters:
n: number of "trials"
p : probability of the event
binomial coefficient: "n choose x ": total number of ways to have x successes of the event.

$$
\binom{n}{x}=\frac{n!}{x!(n-x)!}
$$

Discrete Distribution

Common Discrete Random Variables

- Binomial(n, p)

$$
f_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \text { if } 0 \leq x \leq n \rho^{3}(0 \text { otherwise }) \quad{ }^{20}
$$

example: number of heads after n coin flips (p, probability of heads)

- Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure

Discrete Distribution

Common Discrete Random Variables

- Binomial(n, p)

$$
f_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \text { if } 0 \leq x \leq n \rho^{3}(0 \text { otherwise }) \quad{ }^{20}
$$

example: number of heads after n coin flips (p, probability of heads)

- Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure
- Discrete Uniform(a, b)

Discrete Distribution

Common Discrete Random Variables

- Binomial(n, p)

$$
f_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, \text { if } 0 \leq x \leq n(0 \text { otherwise }) \quad{ }^{20}
$$

example: number of heads after n coin flips (p, probability of heads)

- Bernoulli(p) = Binomial(1, p)
example: one trial of success or failure
- Discrete Uniform(a, b)
- Geometric(p)

$$
\mathrm{P}(X=k)=p(1-p)^{k-1}, k \geq 1
$$

example: coin flips until first head

RV Review

- Continuous random variable
- PDFs, the notion of density
- normal, uniform, exponential
- CDFs
- kernel density estimation
- Discrete random variables
- PMFs
- binomial, Bernoulli, uniform, geometric

